

Derivativess

Derivativess

DEFINITIONS The slope of the curve $y=f(x)$ at the point $P\left(x_{0}, f\left(x_{0}\right)\right)$ is the number

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \quad \text { (provided the limit exists). }
$$

The tangent line to the curve at P is the line through P with this slope.

Derivativess

Derivative of a Constant Function

If f has the constant value $f(x)=c$, then

$$
\frac{d f}{d x}=\frac{d}{d x}(c)=0
$$

Derivative of a Positive Integer Power
If n is a positive integer, then

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

Derivative Constant Multiple Rule

If u is a differentiable function of x, and c is a constant, then

$$
\frac{d}{d x}(c u)=c \frac{d u}{d x} .
$$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{c-c}{h}=\lim _{h \rightarrow b} 0=0 .
$$

$$
\begin{aligned}
\frac{d}{d x} c u & =\lim _{h \rightarrow 0} \frac{c u(x+h)-c u(x)}{h} \\
& =c \lim _{t \rightarrow 0} \frac{u(x+h)-u(x)}{h} \\
& =c \frac{d u}{d x}
\end{aligned}
$$

Derivative Sum Rule

If u and v are differentiable functions of x, then their sum $u+v$ is differentiable at every point where u and v are both differentiable. At such points,

$$
\frac{d}{d x}(u+v)=\frac{d u}{d x}+\frac{d v}{d x} .
$$

Derivative of the Natural Exponential Function

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

Derivative Product Rule
If u and v are differentiable at x, then so is their product $u v$, anc

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+\frac{d u}{d x} v
$$

Derivative Quotient Rule
If u and v are differentiable at x and if $v(x) \neq 0$, then the quotient u / v is differentiable at x, and

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

EXAMPLE 1 Differentiate the following powers of x.
(a) x^{3}
(b) $x^{2 / 3}$
(c) $x^{\sqrt{2}}$
(d) $\frac{1}{x^{4}}$
(e) $x^{-4 / 3}$
(f) $\sqrt{x^{2+\pi}}$

Solution
(a) $\frac{d}{d x}\left(x^{3}\right)=3 x^{3-1}=3 x^{2}$
(b) $\frac{d}{d x}\left(x^{2 / 3}\right)=\frac{2}{3} x^{(2 / 3)-1}=\frac{2}{3} x^{-1 / 3}$
(c) $\frac{d}{d x}\left(x^{\sqrt{2}}\right)=\sqrt{2} x^{\sqrt{2}-1}$
(d) $\frac{d}{d x}\left(\frac{1}{x^{4}}\right)=\frac{d}{d x}\left(x^{-4}\right)=-4 x^{-4-1}=-4 x^{-5}=-\frac{4}{x^{5}}$
(e) $\frac{d}{d x}\left(x^{-4 / 3}\right)=-\frac{4}{3} x^{-(4 / 3)-1}=-\frac{4}{3} x^{-7 / 3}$
(f) $\frac{d}{d x}\left(\sqrt{x^{2+\pi}}\right)=\frac{d}{d x}\left(x^{1+(\pi / 2)}\right)=\left(1+\frac{\pi}{2}\right) x^{1+(\pi / 2)-1}=\frac{1}{2}(2+\pi) \sqrt{x^{\pi}}$

Let $y=f(x)$ be a function of x. If the limit :

$$
\frac{d y}{d x}=f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}
$$

exists and is finite, we call this limit the derivative of f at x and say that f is differentiable at \boldsymbol{x}.

EXAMPLE : Find the derivative of the function : $f(x)=\frac{t}{\sqrt{2 x+3}}$

Sol.:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\frac{1}{\sqrt{2(x+\Delta x)+3}}-\frac{1}{\sqrt{2 x+3}}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\sqrt{2 x+3}-\sqrt{2(x+\Delta x)+3}}{\Delta x \cdot \sqrt{2(x+\Delta x)+3} \sqrt{2 x+3}} \cdot \frac{\sqrt{2 x+3}+\sqrt{2(x+\Delta x)+3}}{\sqrt{2 x+3}+\sqrt{2(x+\Delta x)+3}} \\
& =\lim _{\Delta x \rightarrow 0} \frac{(2 x+3)-(2(x+\Delta x)+3)}{\Delta x \cdot \sqrt{2(x+\Delta x)+3} \sqrt{2 x+3}(\sqrt{2 x+3}+\sqrt{2(x+\Delta x)+3)}} \\
& =\frac{-2}{(2 x+3)(\sqrt{2 x+3}+\sqrt{2 x+3)}}=-\frac{1}{\sqrt{(2 x+3)^{\prime}}}
\end{aligned}
$$

EXAMPLE Find the derivative of (a) $y=\frac{t^{2}-1}{t^{3}+1}$, (b) $y=e^{-x}$

Solution

(a) We apply the Quotient Rule with $u=t^{2}-1$ and $v=t^{3}+1$:

$$
\begin{aligned}
\frac{d y}{d t} & =\frac{\left(t^{3}+1\right) \cdot 2 t-\left(t^{2}-1\right) \cdot 3 t^{2}}{\left(t^{3}+1\right)^{2}} \quad \frac{d}{d t}\left(\frac{u}{v}\right)=\frac{v(d u / d t)-u(d v / d t)}{v^{2}} \\
& =\frac{2 t^{4}+2 t-3 t^{4}+3 t^{2}}{\left(t^{3}+1\right)^{2}} \\
& =\frac{-t^{4}+3 t^{2}+2 t}{\left(t^{3}+1\right)^{2}} .
\end{aligned}
$$

(b) $\frac{d}{d x}\left(e^{-x}\right)=\frac{d}{d x}\left(\frac{1}{e^{x}}\right)=\frac{e^{x} \cdot 0-1 \cdot e^{x}}{\left(e^{x}\right)^{2}}=\frac{-1}{e^{x}}=-e^{-x}$

EXAMPLE Find the derivative of the polynomial $y=x^{3}+\frac{4}{3} x^{2}-5 x+1$
Solution $\frac{d y}{d x}=\frac{d}{d x} x^{3}+\frac{d}{d x}\left(\frac{4}{3} x^{2}\right)-\frac{d}{d x}(5 x)+\frac{d}{d x}$ (1)

$$
=3 x^{2}+\frac{4}{3} \cdot 2 x-5+0=3 x^{2}+\frac{8}{3} x-5
$$

EXAMPLE Find the derivative of

$$
\begin{aligned}
y & =\frac{(x-1)\left(x^{2}-2 x\right)}{x^{4}} \\
y=\frac{(x-1)\left(x^{2}-2 x\right)}{x^{4}}= & \frac{x^{3}-3 x^{2}+2 x}{x^{4}}=x^{-1}-3 x^{-2}+2 x^{-3} \\
\frac{d y}{d x} & =-x^{-2}-3(-2) x^{-3}+2(-3) x^{-4} \\
& =-\frac{1}{x^{2}}+\frac{6}{x^{3}}-\frac{6}{x^{4}}
\end{aligned}
$$

EXAMPLE Find the derivative of (a) $y=\frac{1}{x}\left(x^{2}+e^{x}\right)$, (b) $y=e^{2 x}$.

Solution

(a) We apply the Product Rule with $u=1 / x$ and $v=x^{2}+e^{x}$:

$$
\begin{aligned}
\frac{d}{d x}\left[\frac{1}{x}\left(x^{2}+e^{x}\right)\right] & =\frac{1}{x}\left(2 x+e^{x}\right)+\left(-\frac{1}{x^{2}}\right)\left(x^{2}+e^{x}\right) \\
& =2+\frac{e^{x}}{x}-1-\frac{e^{x}}{x^{2}} \\
& =1+(x-1) \frac{e^{x}}{x^{2}}
\end{aligned}
$$

(b) $\frac{d}{d x}\left(e^{2 x}\right)=\frac{d}{d x}\left(e^{x} \cdot e^{x}\right)=e^{x} \cdot \frac{d}{d x}\left(e^{x}\right)+\frac{d}{d x}\left(e^{x}\right) \cdot e^{x}=2 e^{x} \cdot e^{x}=2 e^{2 x}$

EXAMPLE:

$E X-2-$ Find $\frac{d y}{d x}$ for the following functions :
a) $y=\left(x^{2}+1\right)^{5}$

Sol-
a) $\frac{d y}{d x}=5\left(x^{2}+1\right)^{\prime} \cdot 2 x=10 x\left(x^{2}+1\right)^{\prime}$
b) $y=[(5-x)(4-2 x)]^{2}$

Sol.

b) $\frac{d y}{d x}=2[(5-x)(4-2 x)][-2(5-x)-(4-2 x)]$

$$
=8(5-x)(2-x)(2 x-7)
$$

c) $y=\left(2 x^{3}-3 x^{2}+6 x\right)^{-5}$

Sol.

c) $\frac{d y}{d x}=-5\left(2 x^{3}-3 x^{2}+6 x\right)^{-6}\left(6 x^{2}-6 x+6\right)$

$$
=-30\left(2 x^{3}-3 x^{2}+6 x\right)^{-6}\left(x^{2}-x+1\right)
$$

d) $y=\frac{12}{x}-\frac{4}{x^{3}}+\frac{3}{x^{4}}$

Sol.
d) $y=12 x^{-1}-4 x^{-3}+3 x^{-1} \Rightarrow \frac{d y}{d x}=-12 x^{-2}+12 x^{-1}-12 x^{-s}$

$$
\Rightarrow \frac{d y}{d x}=-\frac{12}{x^{2}}+\frac{12}{x^{4}}-\frac{12}{x^{5}}
$$

e) $y=\frac{\left(x^{2}+x\right)\left(x^{2}-x+1\right)}{x^{3}}$

Sol.

$$
\text { e) } \begin{aligned}
& y=\frac{(x+1)\left(x^{2}-x+1\right)}{x^{3}} \Rightarrow \\
& \frac{d y}{d x}=\frac{x^{3}\left[\left(x^{2}-x+1\right)+(x+1)(2 x-1)\right]-3 x^{2}(x+1)\left(x^{2}-x+1\right)}{x^{6}}=-\frac{3}{x^{4}}
\end{aligned}
$$

Second- and Higher-Order Derivatives

How to Read the Symbols for Derivatives
$y^{\prime} \quad$ "y prime"
$y " \quad$ " y double prime"
$\frac{d^{2} y}{d x^{2}} \quad " d$ squared y by $d x$ squared"
$y^{\prime \prime \prime} \quad$ " y triple prime"
$y^{(n)} \quad$ " y super $n "$
$\frac{d^{n} y}{d x^{n}} \quad " d$ to the n of y by $d x$ to the $n "$
$D^{n} \quad$ " d to the n "
$f^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=y^{\prime \prime}=\frac{d y^{\prime}}{d x}=\frac{d}{d x}\left(6 x^{5}\right)=30 x^{4}$

EXAMPLE

The first four derivatives of $y=x^{3}-3 x^{2}+2$ are
First derivative: $\quad y^{\prime}=3 x^{2}-6 x$
Second derivative: $\quad y^{\prime \prime}=6 x-6$
Third derivative: $\quad y^{\prime \prime \prime}=6$
Fourth derivative: $\quad y^{(4)}=0$.
Home Works
Derivative Calculations find the first and second derivatives.

1. $y=-x^{2}+3$
2. $y=x^{2}+x+8$
3. $s=5 t^{3}-3 t^{5}$
4. $w=3 z^{7}-7 z^{3}+21 z^{2}$
5. $y=\frac{4 x^{3}}{3}-x+2 e^{x}$
6. $y=\frac{x^{3}}{3}+\frac{x^{2}}{2}+e^{-x}$
7. $w=3 z^{-2}-\frac{1}{z}$
8. $s=-2 t^{-1}+\frac{4}{t^{2}}$

Find the derivatives of the functions in Exercises .

1. $y=\frac{2 x+5}{3 x-2}$
2. $g(x)=\frac{x^{2}-4}{x+0.5}$
3. $v=(1-t)\left(1+t^{2}\right)^{-1}$
4. $f(s)=\frac{\sqrt{s}-1}{\sqrt{s}+1}$
5. $z=\frac{4-3 x}{3 x^{2}+x}$
6. $f(t)=\frac{t^{2}-1}{t^{2}+t-2}$
7. $w=(2 x-7)^{-1}(x+5)$
8. $u=\frac{5 x+1}{2 \sqrt{x}}$

Derivatives of Trigonometric Functions

Derivative of the Sine Function

$$
\sin (x+h)=\sin x \cos h+\cos x \sin h
$$

If $f(x)=\sin x$, then

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h} \\
& =\lim _{h \rightarrow 0} \frac{(\sin x \cos h+\cos x \sin h)-\sin x}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin x(\cos h-1)+\cos x \sin h}{h} \\
& =\lim _{h \rightarrow 0}\left(\sin x \cdot \frac{\cos h-1}{h}\right)+\lim _{h \rightarrow 0}\left(\cos x \cdot \frac{\sin h}{h}\right) \\
& =\sin x \cdot \lim _{h \rightarrow 0} \frac{\cos h-1}{h}+\cos x \cdot \lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =\sin x \cdot 0+\cos x \cdot 1=\cos x .
\end{aligned}
$$

Derivatives of the Other Basic Trigonometric Functions
$\tan x=\frac{\sin x}{\cos x}, \quad \cot x=\frac{\cos x}{\sin x}, \quad \sec x=\frac{1}{\cos x}, \quad$ and $\quad \csc x=\frac{1}{\sin x}$

The derivatives of the other trigonometric functions:

$$
\begin{array}{ll}
\frac{d}{d x}(\tan x)=\sec ^{2} x & \frac{d}{d x}(\cot x)=-\csc ^{2} x \\
\frac{d}{d x}(\sec x)=\sec x \tan x & \frac{d}{d x}(\csc x)=-\csc x \cot x
\end{array}
$$

EXAMPLE Find $y^{\prime \prime}$ if $y=\sec x$

$$
\begin{aligned}
y & =\sec x \\
y^{\prime} & =\sec x \tan x
\end{aligned}
$$

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d}{d x}(\sec x \tan x) \\
& =\sec x \frac{d}{d x}(\tan x)+\tan x \frac{d}{d x}(\sec x) \\
& =(\sec x)\left(\sec ^{2} x\right)+(\tan x)(\sec x \tan x) \\
& =\sec ^{3} x+\sec x \tan ^{2} x
\end{aligned}
$$

Derivative of the Cosine Function

With the help of the angle sum formula for the cosine function

$$
\cos (x+h)=\cos x \cos h-\sin x \sin h
$$

we can compute the limit of the difference quotient:

$$
\begin{aligned}
\frac{d}{d x}(\cos x) & =\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos x}{h} \\
& =\lim _{h \rightarrow 0} \frac{(\cos x \cos h-\sin x \sin h)-\cos x}{h} \\
& =\lim _{h \rightarrow 0} \frac{\cos x(\cos h-1)-\sin x \sin h}{h} \\
& =\lim _{h \rightarrow 0}\left(\cos x \cdot \frac{\cos h-1}{h}\right)-\lim _{h \rightarrow 0}\left(\sin x \cdot \frac{\sin h}{h}\right) \\
& =\cos x \cdot \lim _{h \rightarrow 0} \frac{\cos h-1}{h}-\sin x \cdot \lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =\cos x \cdot 0-\sin x \cdot 1 \\
& =-\sin x .
\end{aligned}
$$

The derivative of the sine function is the cosine function:

$$
\frac{d}{d x}(\sin x)=\cos x
$$

EXAMPLE We find derivatives of a difference, a product, and a quotient, each of which involves the sine tunction.
(a) $y=x^{2}-\sin x: \quad \frac{d y}{d x}=2 x-\frac{d}{d x}(\sin x)$

$$
=2 x-\cos x
$$

(b) $y=e^{x} \sin x: \quad \frac{d y}{d x}=e^{x} \frac{d}{d x}(\sin x)+\left(\frac{d}{d x} e^{x}\right) \sin x \quad$ Product Rule $=e^{x} \cos x+e^{x} \sin x$

$$
=e^{x}(\cos x+\sin x)
$$

(c) $y=\frac{\sin x}{x} ; \quad \frac{d y}{d x}=\frac{x \cdot \frac{d}{d x}(\sin x)-\sin x \cdot 1}{x^{2}}$ Quotient Rule

$$
=\frac{x \cos x-\sin x}{x^{2}}
$$

EXAMPLE We find derivatives of the cosine function in combinations with other functions.
(a) $y=5 e^{x}+\cos x$:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(5 e^{x}\right)+\frac{d}{d x}(\cos x) \quad \text { Sum Rule } \\
& =5 e^{x}-\sin x
\end{aligned}
$$

(b) $y=\sin x \cos x$:

$$
\begin{aligned}
\frac{d y}{d x} & =\sin x \frac{d}{d x}(\cos x)+\left(\frac{d}{d x}(\sin x)\right) \cos x \quad \text { Product Rule } \\
& =(\sin x)(-\sin x)+(\cos x)(\cos x) \\
& =\cos ^{2} x-\sin ^{2} x
\end{aligned}
$$

(c) $y=\frac{\cos x}{1-\sin x}$;

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{(1-\sin x) \frac{d}{d x}(\cos x)-\cos x \frac{d}{d x}(1-\sin x)}{(1-\sin x)^{2}} \\
& =\frac{(1-\sin x)(-\sin x)-(\cos x)(0-\cos x)}{(1-\sin x)^{2}} \\
& =\frac{1-\sin x}{(1-\sin x)^{2}}=\frac{1}{1-\sin x}
\end{aligned}
$$

HemeWorks:

1. $y=-10 x+3 \cos x$
2. $y=\frac{3}{x}+5 \sin x$
3. $y=x^{2} \cos x$
4. $y=\sqrt{x} \sec x+3$
5. $y=-4 \sqrt{x}+\frac{7}{e^{x}}$
6. $y=x^{2} \cot x-\frac{1}{x^{2}}$
7. $f(x)=\sin x \tan x$
8. $g(x)=\frac{\cos x}{\sin ^{2} x}$
9. $y=x e^{-x} \sec x$
10. $y=(\sin x+\cos x) \sec x$

Chain Rule

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x} .
$$

C: y turns B: u turns A: x turns

Derivative of a Composite Function

EXAMPLE The function $\quad y=\left(3 x^{2}+1\right)^{2}$
is obtained by composing the functions $y=f(u)=u^{2}$ and $u=g(x)=3 x^{2}+1$
Calculating derivatives, we see that

$$
\begin{aligned}
\frac{d y}{d u} \cdot \frac{d u}{d x} & =2 u \cdot 6 x \\
& =2\left(3 x^{2}+1\right) \cdot 6 x \\
& =36 x^{3}+12 x .
\end{aligned}
$$

EXAMPLE Show that the slope of every line tangent to the curve $y=1 /(1-2 x)^{3}$ is positive.

Solution We find the derivative: Powar Chain Rule with $n=(1-2 x), n=-3$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}(1-2 x)^{-3} \\
& =-3(1-2 x)^{-4} \cdot \frac{d}{d x}(1-2 x) \\
& =-3(1-2 x)^{-4} \cdot(-2) \\
& =\frac{6}{(1-2 x)^{4}} .
\end{aligned}
$$

EXAMPLE 2 An object moves along the x-axis so that its position at any time $t \geq 0$ is given by $x(t)=\cos \left(t^{2}+1\right)$. Find the velocity of the object as a function of t.

Solution We know that the velocity is $d x / d t$. In this instance, x is a composition of two functions: $x=\cos (u)$ and $u=t^{2}+1$. We have

$$
\begin{array}{lr}
\frac{d x}{d u}=-\sin (u) & x=\cos (u) \\
\frac{d u}{d t}=2 t . & u=t^{2}+1
\end{array}
$$

By the Chain Rule,

$$
\begin{aligned}
\frac{d x}{d t} & =\frac{d x}{d u} \cdot \frac{d u}{d t} \\
& =-\sin (u) \cdot 2 t \\
& =-\sin \left(t^{2}+1\right) \cdot 2 t \\
& =-2 t \sin \left(t^{2}+1\right)
\end{aligned}
$$

EXAMPLE 6 The Power Chain Rule simplifies computing the derivative of a power of an expression.
(a) $\frac{d}{d x}\left(5 x^{3}-x^{4}\right)^{7}=7\left(5 x^{3}-x^{4}\right)^{6} \frac{d}{d x}\left(5 x^{3}-x^{4}\right)$

> Power Chain Rule with $u=5 x^{3}-x^{4}, n=7$

$$
=7\left(5 x^{3}-x^{4}\right)^{6}\left(15 x^{2}-4 x^{3}\right)
$$

(b) $\frac{d}{d x}\left(\frac{1}{3 x-2}\right)=\frac{d}{d x}(3 x-2)^{-1}$

$$
\begin{aligned}
& =-1(3 x-2)^{-2} \frac{d}{d x}(3 x-2) \\
& =-1(3 x-2)^{-2}(3) \\
& =-\frac{3}{(3 x-2)^{2}}
\end{aligned}
$$

Power Chain Rule with
$u=3 x-2, n=-1$

In part (b) we could also find the derivative with the Quotient Rule.
(c) $\frac{d}{d x}\left(\sin ^{5} x\right)=5 \sin ^{4} x \cdot \frac{d}{d x} \sin x$ Power Chain Rule with $u=\sin x, n=5$, because $\sin ^{n} x$ means $(\sin x)^{n}, n \neq-1$

$$
=5 \sin ^{4} x \cos x
$$

(d) $\frac{d}{d x}\left(e^{\sqrt{3 x+1}}\right)=e^{\sqrt{3 x+1}} \cdot \frac{d}{d x}(\sqrt{3 x+1})$

Power Chain Rule with

$$
\begin{aligned}
& =e^{\sqrt{3 x+1}} \cdot \frac{1}{2}(3 x+1)^{-1 / 2} \cdot 3 \\
& =\frac{3}{2 \sqrt{3 x+1}} e^{\sqrt{3 x+1}}
\end{aligned}
$$

Derivative Calculations

$$
\text { given } \quad y=f(u) \quad \text { and } \quad u=g(x)
$$

1. $y=6 u-9, \quad u=(1 / 2) x^{4}$ 2. $y=2 u^{3}, \quad u=8 x-1$
2. $y=\sin u, \quad u=3 x+1$
3. $y=\cos u, \quad u=e^{-x}$
4. $y=\sqrt{u}, \quad u=\sin x$
5. $y=\sin u, \quad u=x-\cos x$
6. $y=\tan u, \quad u=\pi x^{2}$
7. $y=-\sec u, \quad u=\frac{1}{x}+7 x$

Second Derivatives

Find $y^{\prime \prime}$ in Exercises

$$
\begin{array}{ll}
\text { 1. } y=\left(1+\frac{1}{x}\right)^{3} & \text { 2. } y=(1-\sqrt{x})^{-1} \\
\text { 3. } y=\frac{1}{9} \cot (3 x-1) & \text { 4. } y=9 \tan \left(\frac{x}{3}\right) \\
\text { 5. } y=x(2 x+1)^{4} & \text { 6. } y=x^{2}\left(x^{3}-1\right)^{5} \\
\text { 7. } y=e^{x^{2}}+5 x & \text { 8. } y=\sin \left(x^{2} e^{x}\right)
\end{array}
$$

Rules for Inequalities

If a, b, and c are real numbers, then:

1. $a<b \Rightarrow a+c<b+c$

2. $a<b \Rightarrow a-c<b-c$
3. $a<b$ and $c>0 \Rightarrow a c<b c$
4. $a<b$ and $c<0 \Rightarrow b c<a c$

Special case: $a<b \Rightarrow-b<-a$
5. $a>0 \Rightarrow \frac{1}{a}>0$
6. If a and b are both positive or both negative, then $a<b \Rightarrow \frac{1}{b}<\frac{1}{a}$

EXAMPLE 1 Solve the following inequalities and show their solution sets on the real line.
(a) $2 x-1<x+3$
(b) $-\frac{x}{3}<2 x+1$
(c) $\frac{6}{x-1} \geq 5$

Solution
(a)

$$
\begin{aligned}
2 x-1 & <x+3 \\
2 x & <x+4 \\
x & <4
\end{aligned}
$$

(a)

(b)

(c)

Absolute Value

The absolute value of a number x, denoted by $|x|$, is defined by the formula

$$
|x|=\left\{\begin{aligned}
x, & x \geq 0 \\
-x . & x<0
\end{aligned}\right.
$$

Absolute Value Properties

1. $|-a|=|a|$
2. $|a b|=|a||b|$
3. $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$
4. $|a+b| \leq|a|+|b|$

Absolute Values and Intervals
If a is any positive number, then
5. $|x|=a \quad$ if and only if $x= \pm a$
6. $|x|<a$ if and only if $-a<x<a$
7. $|x|>a$ if and only if $x>a$ or $x<-a$
8. $|x| \leq a$ if and only if $-a \leq x \leq a$
9. $|x| \geq a \quad$ if and only if $x \geq a$ or $x \leq-a$

EXAMPLE 2 Solving an Equation with Absolute Values
Solve the equation $|2 x-3|=7$.
Solution By Property 5, $2 x-3= \pm 7$, so there are two possibilities:

$$
\begin{array}{rlrl}
2 x-3 & =7 & 2 x-3 & =-7 \\
2 x & =10 & 2 x & =-4 \\
x & =5 & x & =-2
\end{array}
$$

The solutions of $|2 x-3|=7$ are $x=5$ and $x=-2$.

EXAMPLE 3 Solving an Inequality Involving Absolute Values

Solve the inequality $\left|5-\frac{2}{x}\right|<1 . \quad \square\left|5-\frac{2}{x}\right|<1 \Leftrightarrow-1<5-\frac{2}{x}<1$

$$
\begin{aligned}
& \Leftrightarrow-6<-\frac{2}{x}<-4 \\
& \Leftrightarrow 3>\frac{1}{x}>2 \\
& \Leftrightarrow \frac{1}{3}<x<\frac{1}{2} .
\end{aligned}
$$

EXAMPLE Solve the inequality and show the solution set on the real line:
(a) $|2 x-3| \leq 1$
(b) $|2 x-3| \geq 1$
(c) $|y-3|=7$
(d) $|2 t+5|=4$

Functions

EXAMPLE Sketching a Graph

Graph the function $y=x^{2}$ over the interval $[-2,2]$.

$$
|x|=\left\{\begin{aligned}
x, & x \geq 0 \\
-x, & x<0
\end{aligned} \quad \square \quad \underset{-x}{\frac{1}{-3-2}-1} 0\right.
$$

Even Functions and Odd Functions:

DEFINITIONS A function $y=f(x)$ is an

$$
\begin{aligned}
& \text { even function of } x \text { if } f(-x)=f(x), \\
& \text { odd function of } x \text { if } f(-x)=-f(x),
\end{aligned}
$$

(a) for every x in the function's domain.

(b)

EXAMPLE Even function: $(-x)^{2}=x^{2}$ for all x; symmetry about y-axis. So $f(-3)=9=f(3)$. Changing the sign of x does not change the value of an even function.

Even function: $(-x)^{2}+1=x^{2}+1$ for all x; symmetry about y-axis

$$
\begin{aligned}
& f(x)=x^{2} \\
& f(x)=x^{2}+1
\end{aligned}
$$

Odd function: $(-x)=-x$ for all x; symmetry about the origin. So $f(-3)=-3$ while $f(3)=3$. Changing the sign of x changes the sign of the value of an odd function.
Not odd: $f(-x)=-x+1$, but $-f(x)=-x-1$. The two are not equal.
Not even: $(-x)+1 \neq x+1$ for all $x \neq 0$

$$
\begin{aligned}
& f(x)=x \\
& f(x)=x+1
\end{aligned}
$$

Homeworks:

Defined Functions

$$
\begin{aligned}
& f(x)= \begin{cases}x, & 0 \leq x \leq 1 \\
2-x, & 1<x \leq 2\end{cases} \\
& g(x)= \begin{cases}1-x, & 0 \leq x \leq 1 \\
2-x, & 1<x \leq 2\end{cases} \\
& F(x)= \begin{cases}4-x^{2}, & x \leq 1 \\
x^{2}+2 x, & x>1\end{cases} \\
& G(x)= \begin{cases}1 / x, & x<0 \\
x, & 0 \leq x\end{cases}
\end{aligned}
$$

Functions

$$
\begin{aligned}
& f(x)=3 \\
& f(x)=x^{2}+1 \\
& g(x)=x^{3}+x \\
& f(x)=x^{-5} \\
& f(x)=x^{2}+x \\
& g(x)=x^{4}+3 x^{2}-1
\end{aligned}
$$

$$
g(x)=\frac{x}{x^{2}-1}
$$

Limits and Continuity

Average and Instantaneous Speed

A moving body's average speed during an interval of time is found by dividing the distance covered by the time elapsed. The unit of measure is length per unit time: kilometers per hour, feet per second, or whatever is appropriate to the problem at hand.

$$
\frac{\Delta y}{\Delta t}=\frac{16\left(t_{0}+h\right)^{2}-16 t_{0}^{2}}{h}
$$

EXAMPLE 1 Finding an Average Speed

A rock breaks loose from the top of a tall cliff. What is its average speed
(a) during the first 2 sec of fall?
(b) during the $1-\mathrm{sec}$ interval between second 1 and second 2 ?
(a) For the first 2 sec: $\quad \frac{\Delta y}{\Delta t}=\frac{16(2)^{2}-16(0)^{2}}{2-0}=32 \frac{\mathrm{ft}}{\mathrm{sec}}$
(b) From sec I to sec 2; $\quad \frac{\Delta y}{\Delta t}=\frac{16(2)^{2}-16(1)^{2}}{2-1}=48 \frac{\mathrm{ft}}{\mathrm{sec}}$

Average Rates of Change and Secant Lines

Average Rate of Change over an Interval

The average rate of change of $y=f(x)$ with respect to x over the interval $\left[x_{1}, x_{2}\right]$ is

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}, \quad h \neq 0 .
$$

THEOREM 1-Limit Laws
If L, M, c, and k are real numbers and

$$
\lim _{s \rightarrow c} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=M, \quad \text { then }
$$

1. Sum Rule:

$$
\lim _{x \rightarrow c}(f(x)+g(x))=L+M
$$

2. Difference Rule:
$\lim _{x \rightarrow c}(f(x)-g(x))=L-M$
3. Constant Multiple Rule:
$\lim _{x \rightarrow e}(k \cdot f(x))=k \cdot L$
4. Product Rule:

$$
\lim _{x \rightarrow c}(f(x) \cdot g(x))=L \cdot M
$$

5. Quotient Rule:
$\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{M}, M \neq 0$
6. Power Rule:
$\lim _{x \rightarrow c}[f(x)]^{n}=L^{n}, n$ a positive integer
7. Root Rule:
$\lim _{x \rightarrow c} \sqrt[n]{f(x)}=\sqrt[n]{L}=L^{1 / n}, n$ a positive integer
(If n is even, we assume that $f(x) \geq 0$ for x in an interval containing c.)
```
    0. L\mp@subsup{\operatorname{lim}}{\infty->\infty}{}\frac{1}{x}=0
    2) L<<< 位 < - 
* Lim=0 < - < < 
A) tim 统=~
2) 
```



```
(7). 
```



```
Ert Llode Lined Erpmleorionn Surys
(\frac{-}{0}=\mp@subsup{\infty}{}{2},\infty,\frac{\infty}{\infty}+\infty-\infty,\infty,\infty,
```


EXAMPLE Use the observations $\lim _{x \rightarrow c} k=k$ and $\lim _{x \rightarrow c} x=c$
(a) $\lim _{x \rightarrow c}\left(x^{3}+4 x^{2}-3\right)$
(b) $\lim _{x \rightarrow c} \frac{x^{4}+x^{2}-1}{x^{2}+5}$
(c) $\lim _{x \rightarrow-2} \sqrt{4 x^{2}+3}$

Solution
(a) $\lim _{x \rightarrow c}\left(x^{3}+4 x^{2}-3\right)=\lim _{x \rightarrow c} x^{3}+\lim _{x \rightarrow c} 4 x^{2}-\lim _{x \rightarrow c} 3$
(c) $\lim _{x \rightarrow-2} \sqrt{4 x^{2}+3}=\sqrt{\lim _{x \rightarrow-2}\left(4 x^{2}+3\right)}$
$=\sqrt{\lim _{x \rightarrow-2} 4 x^{2}+\lim _{x \rightarrow-2} 3}$
(b) $\lim _{x \rightarrow c} \frac{x^{4}+x^{2}-1}{x^{2}+5}=\frac{\lim _{x \rightarrow r}\left(x^{4}+x^{2}-1\right)}{\lim _{x \rightarrow c}\left(x^{2}+5\right)}$

$$
\begin{aligned}
& =\frac{\lim _{x \rightarrow x} x^{4}+\lim _{x \rightarrow c} x^{2}-\lim _{x \rightarrow c} 1}{\lim _{x \rightarrow c} x^{2}+\lim _{x \rightarrow c} 5} \\
& =\frac{c^{4}+c^{2}-1}{c^{2}+5}
\end{aligned}
$$

Example : Evaluate limits of the following
(d)

$$
\begin{aligned}
& \lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}=\frac{\sqrt{9}-3}{9-9}=\frac{0}{0} \\
& \lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)} \\
&= \lim _{x \rightarrow 9} \frac{1}{(\sqrt{x}+3)}=\frac{1}{(\sqrt{9}+3)} \\
&= \frac{1}{3+3}=\frac{1}{6}
\end{aligned}
$$

(e) $\lim _{x \rightarrow 2} \frac{4-x^{2}}{3-\sqrt{x^{2}+5}}=\frac{4-4}{3-\sqrt{4+5}}=\frac{0}{0}$

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{4-x^{2}}{3-\sqrt{x^{2}+5}} * \frac{\left(3+\sqrt{x^{2}+5}\right)}{\left(3+\sqrt{x^{2}+5}\right)} \\
& =\lim _{x \rightarrow 2} \frac{\left(4-x^{2}\right)\left(3+\sqrt{x^{2}+5}\right)}{9-\left(x^{2}+5\right)} \\
& =\lim _{x \rightarrow 2} \frac{\left(4-x^{2}\right)\left(3+\sqrt{x^{2}+5}\right)}{\left(4-x^{2}\right)} \\
& =\lim _{x \rightarrow 2}\left(3+\sqrt{x^{2}+5}\right)=(3+\sqrt{4+5})=3+\sqrt{9} \\
& =6
\end{aligned}
$$

(f) $\lim _{x \rightarrow 0} \frac{5 x^{3}+8 x^{2}}{3 x^{4}-16 x^{2}}=\frac{5(0)^{3}+8(0)^{2}}{3(0)^{4}-16(0)^{2}}=\frac{0}{0}$
$\lim _{x \rightarrow 0} \frac{x^{2}(5 x+8)}{x^{2}\left(3 x^{2}-16\right)}$
$=\lim _{x \rightarrow 0} \frac{5 x+8}{3 x^{2}-16}$
$=\frac{5(0)+8}{3(0)^{2}-16}$
$=\frac{8}{-16}=-\frac{1}{2}$
(g) $\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{x^{2}+3}-2}=\frac{1-1}{\sqrt{1+3}-2}=\frac{0}{\sqrt{4}-2}=\frac{0}{0}$

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{(x-1)}{\sqrt{x^{2}+3}-2} \cdot \frac{\sqrt{x^{2}+3}+2}{\sqrt{x^{2}+3}+2}=\lim _{x \rightarrow 1} \frac{(x-1)\left(\sqrt{x^{2}+3}+2\right)}{\left(x^{2}+3\right)-4} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)\left(\sqrt{x^{2}+3}+2\right)}{\left(x^{2}-1\right)}=\lim _{x \rightarrow 1} \frac{(x-1)\left(\sqrt{x^{2}+3}+2\right)}{(x-1)(x+1)} \\
& =\lim _{x \rightarrow 1} \frac{\sqrt{x^{2}+3}+2}{(x+1)}=\frac{\sqrt{1+3}+2}{1+1}=\frac{\sqrt{4}+2}{2}=\frac{4}{2}=2
\end{aligned}
$$

Limits at Infinity of Rational Function

لحل هذا النوع من الغايات سوف نتطرق المى ثُلاث حالات وهي كالاتي: 1. إذا كانت درجة الاسن في البسط والمقام متساوبة سوف نقّس على اعلى اس في الالة والناتاتج يكون عدد حقيقي.
2. إذا كانت درجة الاس في البسط اتقل من المقام فسوف نقّس الالةَ على أكبر اس موجود والناتج يكون مساوي المى صفر.
3. إذا كانت درجة الاس في البسط أكبر من المقام نقسم الالة على أكبر اس موجود فيها والناتج يقترّ الـى مـ مـ

Example : find $\lim _{x \rightarrow \infty} \frac{x^{2}-2}{2 x^{3}-3 x^{2}-5}$
Sol :
$\lim _{x \rightarrow \infty} \frac{x^{2}-2}{2 x^{3}-3 x^{2}-5}=\frac{\infty^{2}-2}{2(\infty)^{3}-3(\infty)^{2}-5}=\frac{\infty}{\infty}$
$\lim _{x \rightarrow \infty} \frac{\frac{x^{2}}{x^{3}}-\frac{2}{x^{3}}}{\frac{2 x^{3}}{x^{3}}-\frac{3 x^{2}}{x^{3}}-\frac{5}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}-\frac{2}{x^{3}}}{2-\frac{3}{x}-\frac{5}{x^{3}}}=\frac{\frac{1}{\infty}-\frac{2}{\infty^{3}}}{2-\frac{3}{\infty}-\frac{5}{\infty^{3}}}=\frac{0}{2}=0$

Example : find $\lim _{x \rightarrow \infty} \frac{2 x+3}{5 x+7}$

Sol :
$\lim _{x \rightarrow \infty} \frac{2 x+3}{5 x+7}=\frac{2(\infty)+3}{5(\infty)+7}=\frac{\infty}{\infty}$
$\lim _{x \rightarrow \infty} \frac{\frac{2 x}{x}+\frac{3}{x}}{\frac{5 x}{x}+\frac{7}{x}}=\lim _{x \rightarrow \infty} \frac{2+\frac{3}{x}}{5+\frac{7}{x}}=\frac{2+\frac{3}{\infty}}{5+\frac{7}{\infty}}=\frac{2+0}{5+0}=\frac{2}{5}$

Inequalities

Inequalities

An inequality is like an equation, but instead of an equal $\operatorname{sign}(=)$ it has one of these signs:
< : less than
\leq : less than or equal to
> : greater than
\geq : greater than or equal to

Graphing Inequalities

- When we graph an inequality on a number line we use open and closed circles to represent the number.

$$
\begin{aligned}
& <\quad \text { Plot an open circle } \bigcirc \\
& \leq \quad \geq \quad \text { Plot a closed circle }
\end{aligned}
$$

Graphing Rules

Symbol	Circle	Direction of Arrow
$<$	Open	Left
$>$	Open	Right
\leq	Closed	Left
\geq	Closed	Right

$$
" x<5 "
$$

means that whatever value x has, it must be less than 5 .

What could x be?

" $x \geq-2 "$

means that whatever value x has, it must be greater than or equal to -2 .

What could x be?

Solve an Inequality w+

More Examples

More Examples

$$
r_{x}>-r
$$

More Examples

$$
\begin{array}{r}
r h+\lambda \leq r \varepsilon \\
-\wedge \\
r \mathbf{h} \leq 17
\end{array}
$$

$h \leq \wedge$

All numbers less than \wedge (including
$\wedge)$

Solving One-Step Inequalities

 0$$
X-10<V Y
$$

Solving One-Step Inequalities

 0$$
y+10<r 0
$$

Solving One-Step Inequalities

Multiply both sides by the reciprocal of the coefficient
${ }^{0} \square_{0}^{X}={ }^{\prime} \square^{0}$

$$
x=0 .
$$

Solving One-step Inequalities

Divide both sides by the coefficient of x
 $-{ }^{\circ} x_{\square}$. $-$ $X \square^{\varepsilon}$

Solving Inequalities!

- Solving inequalities is the same as solving equations.
- There are only 2 things you need to know...
1.) If you multiply or divide by a negative number you must switch the sign.

$$
\begin{array}{cc}
\frac{-7 x}{-7}<\frac{21}{-7} \\
x>-3
\end{array}
$$

Dividing by a

 negative means switch the sign!!2.) You will graph your solutions.

Special Case 1: Switching the Signs

- When solving inequalities, if you multiply or divide by a negative you must switch the signs.
- Switching the signs:

Less than becomes Greater than < switches to >
Greater than becomes Less than $>$ switches to <
Less than or equal to becomes Greater than or equal to

$$
\leq \text { switches to } \geq
$$

Greater than or equal to becomes Less than or equal to
\geq switches to \leq

Division Property for Inequalities

Caution! Dividing by a negative number

Multiplication Property for

Inequalities

Caution! When you
multiply by a negative number.
$-\underline{x}>2$
5

$$
\underset{1}{(-5)-\underline{x}} 5
$$

Solving One-Step Inequalities

Let's try some on our
 own ready?

Solving One-Step Inequalities 剖

X_{+} ${ }^{7}$ v

Solving One-Step Inequalities \#2

${ }^{T} \square^{X}{ }_{-}{ }^{0}$

Solving One-Step Inequalities \#3

$$
-r_{x} x_{-}{ }^{10}
$$

Solving One-Step Inequalities 解4

X ${ }^{9} \square$

Answers for \#1- \#4

1. $x \leq 1$
 ヶ. $1 \leq x$ or $x \geq 1$
 r. $x \leq 0$
 $\varepsilon . \quad x>\varepsilon$

Solving One-Step Inequalities ${ }^{\text {Wi }}$

$$
\frac{1}{r} x_{\square}-r
$$

Solving One-Step Inequalities ${ }^{\text {Wh }} 6$

$$
-{ }^{r} \square_{-} \frac{X}{V}
$$

Solving One-Step Inequalities $\begin{aligned} & \text { \# } \\ & 7\end{aligned}$

0
 $$
+{ }^{X} \square^{V}
$$

Solving One-Step Inequalities \#8

X
 0

Answers for \#5- \#8
0. $x \geq-1$
7. Y l $<x$ or $x>y$ y
V. $x \geq Y$

1. $x>10$

Solving Inequalities

- Follow same steps used to solve equations:

$$
\begin{aligned}
3 x+4 & <13 \\
-4 & -4 \\
\frac{3 x}{3} & <\frac{9}{3} \\
x & <3
\end{aligned}
$$

$\cdot-2 x+5 \geq 15$	Practice
$\bullet 14>\frac{x}{-4}+4$	

Time to Practice!

- Solve:

$$
6 x-8>22
$$

Practice Problem 1
 $-4-5 v<-29$

Practice Problem 2 O
 $-1+4 x \leq 31$

Practice Problem 3

$$
-2+r>-1
$$

9

> Practice Problem 4 $-52<8-5 k$

Practice Problem 5
 $8-7 n>-20$

Practice Problem 6

 S$$
-9 \geq-8+\frac{v}{-6}
$$

Home Work

- Solve the inequality and graph the answer.

1. $x+3>-4$
2. $X>-V$
3. $6 d \geq 24$
$r . d \geq \varepsilon$
4. $2 \mathrm{x}-8<14$
r. $x<11$
5. $-2 c-4 \leq 2$
$\varepsilon . c \leq-\mu$

