

جامعة الشيخ الطوسي

ALSHEIKH ALTOOSI UNIVERSITY

Theory of Computation

النظرية االحتسابية

المرحلة الثانية

2025-2024

م.م هناء علي hana.al.shaibani@altoosi.edu.iq

Lecture One Introduction

Computation: is simply a sequence of steps that performed by computer.

Computation Theory: is the branch that deals with how efficiently problems can be solved on a [model of computation,](https://en.wikipedia.org/wiki/Model_of_computation) using a[n](https://en.wikipedia.org/wiki/Algorithm) [algorithm.](https://en.wikipedia.org/wiki/Algorithm) This field is divided into three major branches:

- **1- [Automata theory:](https://en.wikipedia.org/wiki/Automata_theory)** Automata Theory deals with definitions and properties of different types of "computation models". Examples of such models are:
	- Finite Automata: These are used in text processing, compilers, and hardware design.
	- Context-Free Grammars: These are used to define programming languages and in Artificial Intelligence.
	- Turing Machines: These form a simple abstract model of a "real" computer, such as your PC at home.
- **2- [Computability theory:](https://en.wikipedia.org/wiki/Computability_theory)** Computability theory deals primarily with the question of the extent to which a problem is solvable on a computer. In other words, classify problems as being solvable or unsolvable.
- **3- [Complexity theory:](https://en.wikipedia.org/wiki/Computational_complexity_theory)** Complexity theory considers not only whether a problem can be solved at all on a computer, but also how efficiently the problem can be solved. Two major aspects are considered:
	- Time complexity: and how many steps does it take to perform a computation.
	- Space complexity: how much memory is required to perform that computation.

Some Applications of Computation Theory:

- 1. Design and Analysis of Algorithms.
- 2. Computational Complexity.
- 3. Logic in Computer Science.
- 4. Compiler.
- 5. Cryptography.
- 6. Randomness in Computation.
- 7. Quantum Computation

Sets

A set is a collection of "objects" called the elements or members of the set.

Common forms of describing sets are:

- List all elements, e.g. $\{a, b, c, d\}$.
- Form new sets by combining sets through operators.

Examples in Sets Representation:

- $-C = \{a, b, c, d, e, f\}$ finite set
- $-S = \{2, 4, 6, 8, ...\}$ infinite set
- $S = \{ j : j > 0, \text{ and } j = 2k \text{ for } k > 0 \}$
- $-S = \{ i : i \text{ is nonnegative and even } \}$

Terminology and Notation:

- To indicate that x is a member of set S, we write $x \in S$.
- To denote the empty set (the set with no members) as {} or ∅.
- If every element of set A is also an element in set B, we say that A is a subset of B, and write A⊆ B or B⊇A.
- If A is not a part of B, if at least one of the elements of A does not belong to B then we say that A is not a subset of B, and write $A \not\subseteq B$ or $B \not\supseteq A$.

Basic Operations on Sets:

- **Complement:** \hat{A} or \overline{A} or A^c $\overline{A} = \{ x:x \notin A, x \in U \}$ Contain all elements in universal set which are not in A.
- **Union:** consist of all elements in either A or B $A \cup B = \{ x : x \in A \text{ or } x \in B \}$
- **- Intersection:** consist of all elements in both A or B A \cap B = { x:x \in A and $x \in B$
- **- Difference** (*l*): consist of all elements in A but not in B A / B = { $x:x \in A$ but $x \notin B$

Properties of Sets:

-

Let A, B, and C be subsets of the universal set U.

- **Distributive properties**
- A \cap (B ∪ C) = (A \cap B) ∪ (A \cap C) A ∪ (B \cap C) = (A ∪ B) \cap (A ∪ C)
- **Idempotent properties**
	- A $\bigcap A = A$. A $\bigcup A = A$.
- **Double Complement property** $(A^{\sim})^{\sim} = A.$
- **De Morgan's laws** $A \cup B$ ^{*} = $A^{\sim} \cap B^{\sim}$
	- $(A \cap B)^{\sim} = A^{\sim} \cup B^{\sim}$
- **Commutative properties**

 $A \cap B = B \cap A$. $A \cup B = B \cup A$.

- **Associative laws**
	- A $\bigcap (B \bigcap C) = (A \bigcap B) \bigcap C$ A ∪ (B ∪ C) = (A ∪ B) ∪ C
- **Identity properties**
	- A $\cup \emptyset = A$ $A \cap U = A$
- **Complement properties**
	- A ∪ $A^{\sim} = U$ $A \cap A^* = \emptyset$

Language

Symbols: Symbols are an entity or individual objects, which can be any letter, alphabet, or any picture.

Example:

1, a, b, #

Alphabets: Alphabets are a finite set of symbols. It is denoted by Σ .

Examples:

 $\Sigma = \{a, b\}$ Σ = {A, B, C, D} $\Sigma = \{0, 1, 2\}$ $\Sigma = \{ \# , \beta , \Delta \}$

String: It is a finite collection of symbols from the alphabet. The string is denoted by w.

Example:

If $\Sigma = \{a, b\}$, various string that can be generated from Σ are $\{ab, aa, aaa, bb, bbb,$ ba, aba,}.

 \mathscr{L} A string with no symbols is known as an *empty string*. It is represented by epsilon (ϵ) or lambda (λ) or null (\wedge) .

 \mathscr{L} The number of symbols in a string w is called the *length of a string*. It is denoted by |w|.

Example: w

 $= 010$ $|w| = 3$ $|00100| = 5$ $|ab| = 2$ $|\Lambda| = 0$

Language: A language is a set of strings of terminal symbols derivable from alphabet. A language which is formed over Σ can be Finite or Infinite.

Example:

a) $L1 = \{$ Set of string of length 2 $\}$

= {aa, bb, ba, bb} **Finite Language**

b) $L2 = \{Set of all strings starts with 'a' \}$ = {a, aa, aaa, abb, abbb, ababb, …} **Infinite Language**

Types of Languages:

- **1-***Natural Languages:* They are languages that spoken by humans e.g.: English, Arabic and France. It has alphabet: $\Sigma = \{a, b, c, \ldots z\}$. from these alphabetic we make sentences that belong to the language.
- **2-***Programming Language:* (e.g.: c++, Pascal) it has alphabetic: $\Sigma = \{a, b, c, z, c\}$ A, B, C, \ldots , Z, ?, $\langle \cdot, \cdot \rangle$. From these alphabetic we make sentences that belong to programming language.

Example:

Alphabetic: $\Sigma = \{0, 1\}.$ Sentences: 0000001, 1010101

Example:

Alphabetic: $\Sigma = \{a, b\}.$ Sentences: ababaabb, bababbabb

Example:

Let $\Sigma = \{x\}$ be set of alphabet of one letter x. we can write this in form:

 $L_1 = \{x, xx, xx, ...\}$ or write this in an alternate form: $L_1 =$ ${xⁿ for n = 1, 2, 3, ...}$

Let $a = xxx$ and $b = xxxxx$ Then $ab = xxxxxxxx = x^8$ $ba = xxxxxxxx = x^8$ *Example:*

 $L_2 = \{ x, xxx, xxxxx, ... \}$ $= \{ X^{odd} \}$

 $= \{ x^{2n+1}$ for $n = 0, 1, 2, 3, ... \}$

PALINDROME

Let us define a new language called **PALINDROME** over the alphabet

 $\Sigma = \{a, b\}$ PALINDROME = $\{\Lambda, \text{ and all strings } x \text{ such that } \text{reverse}(x) = x \}$ If we begin listing the elements in PALINDROME we find: PALINDROME = $\{\Lambda, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, abba, \dots\}$

Kleene Closuer

They are two repetition marks, also called Closuer or Kleene Star.

- * : Repeat $(0 n)$ times.
- $+$: Repeat $(1 n)$ times.

Example:

If $\Sigma = \{x\}$, then

 $\Sigma^* = L_3 = \{ \Lambda, x, xx, xxx, ... \}$ $\Sigma^+ = L_3 = \{ x, xx, xx, ...\}$

Example:

If $\Sigma = \{0, 1\}$, then

 Σ^* = L₄ = { Λ , 0, 11, 001, 11010, ...} Σ^+ = L₄ = { 0, 01, 110, 101, ...} *Example:*

If $\Sigma = \{aa, b\}$, then

 \sum^* = L₅ = { \land , aab, baa, baab, aabb, ...} $\Sigma^+ = L_5 = \{ aaaa, b, baaa, bb, ... \}$

في هذه اللغة الكلمة)ab)غير مقبولة ألن)aa)هو حرف واحد واليجوز تجزئته.

Example:

If $\Sigma = \{\}$, then

$$
\sum^* = L_4 = \{\Lambda\}
$$

$$
\sum^* = L_4 = \emptyset \text{ or } \{\}
$$