

 المرحلة الثانية

 جامعة الشيخ الطوسي
ALSHEIKH ALTOOSI UNIVERSITY

Theory of Computation

 النظرية الاحتسابية

2024-2025

 م.م هناء علي
hana.al.shaibani@altoosi.edu.iq

Theory of Computation :lec1 Lec. Hanaa Ali

1

Lecture One

Introduction
 Computation: is simply a sequence of steps that performed by computer.

Computation Theory: is the branch that deals with how efficiently problems can

be solved on a model of computation, using an algorithm. This field is divided

into three major branches:

1- Automata theory: Automata Theory deals with definitions and properties of

different types of “computation models”. Examples of such models are:

• Finite Automata: These are used in text processing, compilers, and

hardware design.

• Context-Free Grammars: These are used to define programming languages

and in Artificial Intelligence.

• Turing Machines: These form a simple abstract model of a “real” computer,

such as your PC at home.

2- Computability theory: Computability theory deals primarily with the

question of the extent to which a problem is solvable on a computer. In other

words, classify problems as being solvable or unsolvable.

3- Complexity theory: Complexity theory considers not only whether a problem

can be solved at all on a computer, but also how efficiently the problem can

be solved. Two major aspects are considered:

• Time complexity: and how many steps does it take to perform a

computation.

• Space complexity: how much memory is required to perform that

computation.

Some Applications of Computation Theory:

1. Design and Analysis of Algorithms.

2. Computational Complexity.

3. Logic in Computer Science.

4. Compiler.

5. Cryptography.

6. Randomness in Computation.

7. Quantum Computation

https://en.wikipedia.org/wiki/Model_of_computation
https://en.wikipedia.org/wiki/Model_of_computation
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Automata_theory
https://en.wikipedia.org/wiki/Automata_theory
https://en.wikipedia.org/wiki/Computability_theory
https://en.wikipedia.org/wiki/Computability_theory
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Computational_complexity_theory

Theory of Computation :lec1 Lec. Hanaa Ali

2

Sets

A set is a collection of “objects” called the elements or members of the set.

Common forms of describing sets are:

- List all elements, e.g. {a, b, c, d}.

- Form new sets by combining sets through operators.

Examples in Sets Representation:

- C = { a, b, c, d, e, f } finite set

- S = { 2, 4, 6, 8, …} infinite set

- S = { j : j > 0, and j = 2k for k > 0 }

- S = { j : j is nonnegative and even }

Terminology and Notation:

- To indicate that x is a member of set S, we write x∈ S.

- To denote the empty set (the set with no members) as {} or ∅.

- If every element of set A is also an element in set B, we say that A is a

subset of B, and write A⊆ B or B⊇A.

- If A is not a part of B, if at least one of the elements of A does not belong to

B then we say that A is not a subset of B, and write A⊈ B or B⊉A.

Basic Operations on Sets:

- Complement: Á or A̅ or Ac
A̅ = { x:x ∉ A, x ∈ U}

Contain all elements in universal set which are not in A.

- Union: consist of all elements in either A or B

A ∪ B = { x:x ∈ A or x ∈ B}

- Intersection: consist of all elements in both A or B A ⋂ B = { x:x ∈ A and

x ∈ B}

- Difference (/): consist of all elements in A but not in B A / B = { x:x ∈ A

but x ∉ B}

Theory of Computation :lec1 Lec. Hanaa Ali

3

-

Properties of Sets:

Let A, B, and C be subsets of the universal set U.

- Distributive properties

A ⋂ (B ∪ C) = (A ⋂ B) ∪ (A ⋂ C)

A ∪ (B ⋂ C) = (A ∪ B) ⋂ (A ∪ C)

- Idempotent properties

A ⋂ A = A.

A ∪ A = A.

- Double Complement property

(A~) ~ = A.

- De Morgan’s laws

A ∪ B) ~ = A ~ ⋂ B ~

(A ⋂ B) ~ = A ~ ∪ B ~

- Commutative properties

A ⋂ B = B ⋂ A.

A ∪ B = B ∪ A.

- Associative laws

A ⋂ (B ⋂ C) = (A ⋂ B) ⋂ C

A ∪ (B ∪ C) = (A ∪ B) ∪ C

- Identity properties

A ∪ ∅ = A

A ⋂ U = A

- Complement properties

A ∪ A~ = U

A ⋂ A~ = ∅

Theory of Computation :lec1 Lec. Hanaa Ali

4

Language
Symbols: Symbols are an entity or individual objects, which can be any letter,

alphabet, or any picture.

Example:

1, a, b, #

Alphabets: Alphabets are a finite set of symbols. It is denoted by ∑.

Examples:

∑ = {a, b}

∑ = {A, B, C, D}

∑ = {0, 1, 2}

∑ = {#, β, Δ}

String: It is a finite collection of symbols from the alphabet. The string is denoted

by w.

Example:

If ∑ = {a, b}, various string that can be generated from ∑ are {ab, aa, aaa, bb, bbb,

ba, aba,}.

 A string with no symbols is known as an empty string. It is represented by

epsilon (𝜖) or lambda (𝜆) or null (∧).

 The number of symbols in a string w is called the length of a string. It is

denoted by |w|.

Example: w

= 010

|w| = 3

|00100| = 5

|ab| = 2

| ∧ | = 0

Theory of Computation :lec1 Lec. Hanaa Ali

5

Language: A language is a set of strings of terminal symbols derivable from

alphabet. A language which is formed over Σ can be Finite or Infinite.

Example:

a) L1 = {Set of string of length 2}

 = {aa, bb, ba, bb} Finite Language

b) L2 = {Set of all strings starts with 'a'}

 = {a, aa, aaa, abb, abbb, ababb, …} Infinite Language

Types of Languages:

1- Natural Languages: They are languages that spoken by humans e.g.: English,

Arabic and France. It has alphabet: ∑={a, b, c, …. z}. from these alphabetic we

make sentences that belong to the language.

2- Programming Language: (e.g.: c++, Pascal) it has alphabetic: ∑={a, b, c, z,

A, B, C, .. , Z , ?, /, -, \}. From these alphabetic we make sentences that belong

to programming language.

Example:

Alphabetic: ∑= {0, 1}.

Sentences: 0000001, 1010101

Example:

Alphabetic: ∑= {a, b}.

Sentences: ababaabb, bababbabb

Example:

Let ∑ = {x} be set of alphabet of one letter x. we can write this in form:

L1 = {x, xx, xxx, …} or write

this in an alternate form: L1 =

{xn for n = 1, 2, 3, ...}

Let a = xxx and b = xxxxx

Then ab = xxxxxxxx = x8

ba = xxxxxxxx = x8

Example:

Theory of Computation :lec1 Lec. Hanaa Ali

6

L2 = { x, xxx, xxxxx, ... }

 = { x odd}

 = { x2n+1 for n = 0, 1, 2, 3, ... }

 PALINDROME

Let us define a new language called PALINDROME over the alphabet

∑= {a, b}

PALINDROME = { ∧, and all strings x such that reverse(x) = x } If

we begin listing the elements in PALINDROME we find:

PALINDROME = { ∧, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, abba, ... }

Kleene Closuer

They are two repetition marks, also called Closuer or Kleene Star.

* : Repeat (0 – n) times.

+ : Repeat (1 – n) times.

Example:

If ∑ = {x}, then

∑* = L3 = { ∧, x, xx, xxx, …}

∑+ = L3 = { x, xx, xxx, …}

Example:

If ∑ = {0, 1}, then

∑* = L4 = { ∧, 0, 11, 001, 11010, …}

∑+ = L4 = { 0, 01, 110, 101, …}

 Example:

If ∑ = {aa, b}, then

∑* = L5 = { ∧, aab, baa, baab, aabb, …}

∑+ = L5 = { aaaa, b, baaaa, bb, …}

Theory of Computation :lec1 Lec. Hanaa Ali

7

 (في هذه اللغة الكلمةab(غير مقبولة لأن)aa .هو حرف واحد ولايجوز تجزئته)

 Example:

If ∑ = { }, then

∑* = L4 = {∧}

∑+ = L4 = ∅ or { }

Theory of Computation :lec2 Lec. Hanaa Ali

8

Lecture Two

Regular Expression (RE)

Regular languages are formal languages that can be expressed using regular

expressions.

Regular languages can be generated from one-element languages by applying

certain standard operations a finite number of times. These simple operations

include (concatenation, union, and Kleen closure).

Regular expressions can be thought of as the algebraic description of a regular

language. Regular expression can be defined by the following rules:

1. Every letter of the alphabet ∑ is a regular expression.

2. Null string ∧ and empty set ∅ are regular expressions.

3. If r1 and r2 are regular expressions, then

(i) r1, r2

(ii) r1r2 (concatenation of r1r2)

(iii) r1 + r2 (union of r1 and r2)

(iv) r1*, r2* (kleen closure of r1 and r2) are also regular expressions

4. If a string can be derived from the rules 1, 2 and 3 then it is also a regular

expression.

Note that a* means zero or more occurrence of a in the string while a+ means that

one or more occurrence of a in the string. That means a* denotes language L =

{∧ , a, aa, aaa, ….} and a+ represents language L = {a, aa, aaa, ….}. And also note

that there can be more than one regular expression for a given set of strings.

Example: Write the language for each of the following

 regular expressions, ∑ = {a,b}.

1- (ab)* = {⋀, ab, abab, ababab, … }

2- ab*a = {aa, aba, abba, abbba, abbbba, …}

3- a*b* = {⋀, a, b, aa, ab, bb, aaa, aab, abb, bbb, aaaa, …}

Notice that ba and aba are not in this language. Also we should be very careful

to observe that a*b* ≠ (ab)*

Theory of Computation :lec2 Lec. Hanaa Ali

9

Example: Write a regular expression for the language containing odd number of

1s, ∑ = {0,1}.

The language will contain at least one 1. It may contain any number of 0s

anywhere in the string. So the language we have to write a regular expression for

is 1, 01, 01101, 0111, 111, … This language can be represented by the following

regular expression:

0*(10*10*)*10*

Example: Write the language for each of the following

 regular expressions, ∑ = {x}.

1- L1 = {xodd} = x(xx)* or (xx)*x = {x, xxx, xxxxx, …} 2- L2 =

{xeven} = (xx)* or (xx)*xx or xx(xx)* = {⋀, xx, xxxx, …}

Examples:

1- Consider the language L3 defined over the alphabet ∑ = {a, b, c}, All the words

in L3 begin with an a or c and then are followed by some number of b's. We

may write this as:

 (a + c)b*

2- Consider a finite language L4 that contains all the strings of a's and b's of

length exactly three.

L4 = {aaa, aab, aba, abb, baa, bab, bba, bbb}

So we may write:

 (a + b)(a + b)(a + b) or (a + b)3

In general, if we want to refer to the set of all possible strings of a's and b's of

any length, we could write:

 (a + b)*

3- Construct RE for all words that begin with the letter a:

a(a + b)*

4- All words that begin with an a and end with b can be defined by the

expression: a(a + b)*b

Theory of Computation :lec2 Lec. Hanaa Ali

10

5- The language of all words that have at least two a's can be described by the

expression:

(a + b)*a(a + b)*a(a + b)*

6- The language of all words that have at least one a and at least one b:

(a + b)*a(a + b)* b(a + b)* or bb*aa*

7- The words of the form some b's followed by some a's. These exceptions are

all defined by the regular expression: bb*aa* ≡ b+a+

Example: Write a regular expression for the language

 L = {abnw: n >= 3, w ∈ (a + b)+}

The strings in the language begins with a followed by three bs and followed by

string w. w will contain at least one a or b. The strings are like abbba, abbbb,

abbbbababab, abbbaaaa, . . . This language can be represented by the following

regular expression

ab3(a + b)+

Homework:

1- Find a regular expression over the alphabet {a, b}:

a. L1 = {All strings that contain exactly three a's}

b. L2 = {All strings that end with ab}

c. L3 = {All strings in which letter a is even number}

2- Find the output (words) for the following regular expressions:

a. aa*b

b. (a + b)*ba

c. (11 + 0)*(0+11)*

