

جامعة الشيخ الطوسي

ALSHEIKH ALTOOSI UNIVERSITY

Theory of Computation

النظرية الاحتسابية

2025-2024

م مناع علي hana.al.shaibani@altoosi.edu.iq

Lecture One Introduction

Computation: is simply a sequence of steps that performed by computer.

Computation Theory: is the branch that deals with how efficiently problems can be solved on a model of computation, using an algorithm. This field is divided into three major branches:

- 1- Automata theory: Automata Theory deals with definitions and properties of different types of "computation models". Examples of such models are:
 - Finite Automata: These are used in text processing, compilers, and hardware design.
 - Context-Free Grammars: These are used to define programming languages and in Artificial Intelligence.
 - Turing Machines: These form a simple abstract model of a "real" computer, such as your PC at home.
- **2- Computability theory:** Computability theory deals primarily with the question of the extent to which a problem is solvable on a computer. In other words, classify problems as being solvable or unsolvable.
- **3- Complexity theory:** Complexity theory considers not only whether a problem can be solved at all on a computer, but also how efficiently the problem can be solved. Two major aspects are considered:
 - Time complexity: and how many steps does it take to perform a computation.
 - Space complexity: how much memory is required to perform that computation.

Some Applications of Computation Theory:

- 1. Design and Analysis of Algorithms.
- 2. Computational Complexity.
- 3. Logic in Computer Science.
- 4. Compiler.
- 5. Cryptography.
- 6. Randomness in Computation.
- 7. Quantum Computation

Sets

A set is a collection of "objects" called the elements or members of the set.

Common forms of describing sets are:

- List all elements, e.g. {a, b, c, d}.
- Form new sets by combining sets through operators.

Examples in Sets Representation:

- $C = \{a, b, c, d, e, f\}$ finite set
- $S = \{ 2, 4, 6, 8, ... \}$ infinite set
- $S = \{ j : j > 0, and j = 2k \text{ for } k > 0 \}$
- $S = \{ j : j \text{ is nonnegative and even } \}$

Terminology and Notation:

- To indicate that x is a member of set S, we write $x \in S$.
- To denote the empty set (the set with no members) as $\{\}$ or \emptyset .
- If every element of set A is also an element in set B, we say that A is a subset of B, and write A⊆ B or B⊇A.
- If A is not a part of B, if at least one of the elements of A does not belong to B then we say that A is not a subset of B, and write A⊈ B or B⊉A.

Basic Operations on Sets:

- Complement: Á or Ā or A^c
 Ā = { x:x ∉ A, x ∈ U}
 Contain all elements in universal set which are not in A.
- Union: consist of all elements in either A or B
 A ∪ B = { x:x ∈ A or x ∈ B }
- Intersection: consist of all elements in both A or B A ∩ B = { x:x ∈ A and x ∈ B}
- Difference (/): consist of all elements in A but not in B A / B = { x:x ∈ A but x ∉ B}

Properties of Sets:

Let A, B, and C be subsets of the universal set U.

- Distributive properties

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

- Idempotent properties
 - $A \cap A = A.$

 $A \cup A = A.$

- Double Complement property
 (A[~])[~] = A.
- De Morgan's laws

 $A \cup B)^{\sim} = A^{\sim} \cap B^{\sim}$ $(A \cap B)^{\sim} = A^{\sim} \cup B^{\sim}$

- Commutative properties

 $A \cap B = B \cap A.$ $A \cup B = B \cup A.$

- Associative laws

 $A \cap (B \cap C) = (A \cap B) \cap C$ $A \cup (B \cup C) = (A \cup B) \cup C$

- Identity properties

 $\begin{array}{l} A \quad \cup \ \emptyset = A \\ A \cap \ U = A \end{array}$

- Complement properties

 $\begin{array}{ccc} A & \cup & A^{\sim} = U \\ A & \bigcap & A^{\sim} = \emptyset \end{array}$

Language

Symbols: Symbols are an entity or individual objects, which can be any letter, alphabet, or any picture.

Example:

1, a, b, #

Alphabets: Alphabets are a finite set of symbols. It is denoted by \sum .

Examples:

$$\begin{split} &\sum = \{a, b\} \\ &\sum = \{A, B, C, D\} \\ &\sum = \{0, 1, 2\} \\ &\sum = \{\#, \beta, \Delta\} \end{split}$$

String: It is a finite collection of symbols from the alphabet. The string is denoted by w.

Example:

If $\sum = \{a, b\}$, various string that can be generated from \sum are {ab, aa, aaa, bb, bbb, ba, aba,}.

 \swarrow A string with no symbols is known as an *empty string*. It is represented by epsilon (ϵ) or lambda (λ) or null (Λ).

 \swarrow The number of symbols in a string w is called the *length of a string*. It is denoted by |w|.

Example: w

= 010|w| = 3|00100| = 5|ab| = 2 $|\Lambda| = 0$

Language: A language is a set of strings of terminal symbols derivable from alphabet. A language which is formed over Σ can be Finite or Infinite.

Example:

- a) L1 = {Set of string of length 2} = {aa, bb, ba, bb} Finite Language
- b) L2 = {Set of all strings starts with 'a'}
 = {a, aa, aaa, abb, abbb, ababb, ...} Infinite Language

Types of Languages:

- 1-Natural Languages: They are languages that spoken by humans e.g.: English, Arabic and France. It has alphabet: ∑={a, b, c, z}. from these alphabetic we make sentences that belong to the language.
- **2-***Programming Language:* (e.g.: c++, Pascal) it has alphabetic: ∑={a, b, c, z, A, B, C, ..., Z, ?, /, -, \}. From these alphabetic we make sentences that belong to programming language.

Example:

Alphabetic: $\sum = \{0, 1\}$. Sentences: 0000001, 1010101

Example:

Alphabetic: $\sum = \{a, b\}$. Sentences: ababaabb, bababbabb

Example:

Let $\sum = \{x\}$ be set of alphabet of one letter x. we can write this in form:

 $L_1 = \{x, xx, xxx, ...\} \text{ or write}$ this in an alternate form: $L_1 = \{x^n \text{ for } n = 1, 2, 3, ...\}$

Let a = xxx and b = xxxxxThen $ab = xxxxxxx = x^8$ $ba = xxxxxxx = x^8$ <u>Example:</u>

$$\begin{split} L_2 &= \{ \ x, \, xxx, \, xxxxx, \, \dots \ \} \\ &= \{ \ x^{\ odd} \} \\ &= \{ \ x^{2n+1} \ for \ n = 0, \ 1, \ 2, \ 3, \ \dots \ \} \end{split}$$

PALINDROME

Let us define a new language called $\ensuremath{\textbf{PALINDROME}}$ over the alphabet

 $\sum = \{a, b\}$

PALINDROME = { \land , and all strings x such that reverse(x) = x } If we begin listing the elements in PALINDROME we find: PALINDROME = { \land , a, b, aa, bb, aaa, aba, bab, bbb, aaaa, abba, ... }

Kleene Closuer

They are two repetition marks, also called Closuer or Kleene Star.

* : Repeat (0 - n) times.

+ : Repeat (1 - n) times.

<u>Example:</u>

If $\sum = \{x\}$, then

$$\begin{split} & \sum^* = L_3 = \{ \text{ A, x, xx, xxx, ...} \} \\ & \sum^+ = L_3 = \{ \text{ x, xx, xxx, ...} \} \end{split}$$

Example:

If $\sum = \{0, 1\}$, then

 $\sum^{*} = L_{4} = \{ \land, 0, 11, 001, 11010, \ldots \}$ $\sum^{+} = L_{4} = \{ 0, 01, 110, 101, \ldots \}$ *Example:*

If $\sum = \{aa, b\}$, then

$$\begin{split} &\sum^* = L_5 = \{ \text{ Λ, aab, baa, baab, aabb, \dots} \} \\ &\sum^+ = L_5 = \{ \text{ aaaa, b, baaaa, bb, \dots} \} \end{split}$$

🖉 في هذه اللغة الكلمة (ab) غير مقبولة لأن (aa) هو حرف واحد ولايجوز تجزئته.

Example:

If $\sum = \{ \}$, then

$$\begin{split} & \sum^* = L_4 = \{ \wedge \} \\ & \sum^+ = L_4 = \mbox{0 or } \{ \ \ \} \end{split}$$

Lecture Two

Regular Expression (RE)

Regular languages are formal languages that can be expressed using regular expressions.

Regular languages can be generated from one-element languages by applying certain standard operations a finite number of times. These simple operations include (concatenation, union, and Kleen closure).

Regular expressions can be thought of as the algebraic description of a regular language. Regular expression can be defined by the following rules:

- 1. Every letter of the alphabet \sum is a regular expression.
- 2. Null string \wedge and empty set \emptyset are regular expressions.
- 3. If r1 and r2 are regular expressions, then
 - (i) r1, r2
 - (ii)r1r2 (concatenation of r1r2)
 - (iii) r1 + r2 (union of r1 and r2)
 - (iv) r1*, r2* (kleen closure of r1 and r2) are also regular expressions
- 4. If a string can be derived from the rules 1, 2 and 3 then it is also a regular expression.

Note that a^* means zero or more occurrence of a in the string while a^+ means that one or more occurrence of a in the string. That means a^* denotes language L =

{ \land , a, aa, aaa,} and a⁺ represents language L = {a, aa, aaa,}. And also note that there can be more than one regular expression for a given set of strings.

Example: Write the language for each of the following regular expressions, $\sum = \{a,b\}$.

- 1- $(ab)^* = \{ \land, ab, abab, ababab, \dots \}$
- 2- $ab*a = \{aa, aba, abba, abbba, abbba, ...\}$
- 3- $a*b* = \{ \land, a, b, aa, ab, bb, aaa, aab, abb, bbb, aaaa, ... \}$

Notice that **ba** and **aba** are <u>not</u> in this language. Also we should be very careful to observe that $\mathbf{a}^*\mathbf{b}^* \neq (\mathbf{ab})^*$

Example: Write a regular expression for the language containing odd number of $1s, \sum = \{0,1\}.$

The language will contain at least one 1. It may contain any number of 0s anywhere in the string. So the language we have to write a regular expression for is 1, 01, 01101, 0111, 111, ... This language can be represented by the following regular expression:

Example: Write the language for each of the following regular expressions, $\sum = \{x\}$.

1-
$$L_1 = {x^{odd}} = x(xx)^* \underline{or} (xx)^*x = {x, xxx, xxxxx, ...} 2- L_2 =$$

 $\{\mathbf{x}^{\text{even}}\} = (\mathbf{x}\mathbf{x})^* \, \underline{\mathbf{or}} \, (\mathbf{x}\mathbf{x})^* \mathbf{x}\mathbf{x} \, \underline{\mathbf{or}} \, \mathbf{x}\mathbf{x}(\mathbf{x}\mathbf{x})^* = \{\Lambda, \, \mathbf{x}\mathbf{x}, \, \mathbf{x}\mathbf{x}\mathbf{x}, \, \dots\}$

Examples:

1- Consider the language L_3 defined over the alphabet $\sum = \{a, b, c\}$, All the words in L_3 begin with an **a** or **c** and then are followed by some number of **b's**. We may write this as:

$$(a + c)b^*$$

2- Consider a finite language L_4 that contains all the strings of **a's** and **b's** of length exactly three.

 $L_4 = \{aaa, aab, aba, abb, baa, bab, bba, bbb\}$

So we may write:

$$(a + b)(a + b)(a + b)$$
 or $(a + b)^3$

In general, if we want to refer to the set of all possible strings of **a's** and **b's** of any length, we could write:

(a + b)*

3- Construct RE for all words that begin with the letter **a**:

$$a(a + b)^*$$

4- All words that begin with an **a** and end with **b** can be defined by the expression: a(a + b)*b

5- The language of all words that have at least two **a's** can be described by the expression:

$$(a + b)*a(a + b)*a(a + b)*$$

- 6- The language of all words that have at least one **a** and at least one **b**: $(a + b)^*a(a + b)^*b(a + b)^*$ <u>or</u> bb^*aa^*
- 7- The words of the form some **b's** followed by some **a's**. These exceptions are all defined by the regular expression: $bb^*aa^* \equiv b^+a^+$

Example: Write a regular expression for the language $L = \{ab^nw: n \ge 3, w \in (a + b)^+\}$

The strings in the language begins with a followed by three bs and followed by string w. w will contain at least one a or b. The strings are like abbba, abbbb, abbbbababab, abbbaaaa, . . . This language can be represented by the following regular expression

$$ab^{3}(a + b)^{+}$$

Homework:

- **1-** Find a regular expression over the alphabet {a, b}:
 - a. $L_1 = \{All \text{ strings that contain exactly three a's} \}$
 - b. $L_2 = \{All \text{ strings that end with } ab\}$
 - c. $L_3 = \{All \text{ strings in which letter a is even number}\}$
- 2- Find the output (words) for the following regular expressions:
 - a. aa*b
 - b. (a + b)*ba
 - c. (11+0)*(0+11)*