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Lecture One  

Introduction  
 Computation: is simply a sequence of steps that performed by computer.  

Computation Theory: is the branch that deals with how efficiently problems can 

be solved on a model of computation, using an algorithm. This field is divided 

into three major branches:  

1- Automata theory: Automata Theory deals with definitions and properties of 

different types of “computation models”. Examples of such models are:  

• Finite Automata: These are used in text processing, compilers, and 

hardware design.  

• Context-Free Grammars: These are used to define programming languages 

and in Artificial Intelligence.  

• Turing Machines: These form a simple abstract model of a “real” computer, 

such as your PC at home.  
  

2- Computability theory: Computability theory deals primarily with the 

question of the extent to which a problem is solvable on a computer. In other 

words, classify problems as being solvable or unsolvable.  
  

3- Complexity theory: Complexity theory considers not only whether a problem 

can be solved at all on a computer, but also how efficiently the problem can 

be solved. Two major aspects are considered:  

• Time complexity: and how many steps does it take to perform a 

computation.  

• Space complexity: how much memory is required to perform that 

computation.  

  

Some Applications of Computation Theory:  

1. Design and Analysis of Algorithms.  

2. Computational Complexity.  

3. Logic in Computer Science.  

4. Compiler.  

5. Cryptography.  

6. Randomness in Computation.  

7. Quantum Computation  

https://en.wikipedia.org/wiki/Model_of_computation
https://en.wikipedia.org/wiki/Model_of_computation
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Automata_theory
https://en.wikipedia.org/wiki/Automata_theory
https://en.wikipedia.org/wiki/Computability_theory
https://en.wikipedia.org/wiki/Computability_theory
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Computational_complexity_theory
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Sets  
  

A set is a collection of “objects” called the elements or members of the set.  

Common forms of describing sets are:  

- List all elements, e.g. {a, b, c, d}.  

- Form new sets by combining sets through operators.  

  

Examples in Sets Representation:  

- C = { a, b, c, d, e, f }   finite set  

- S = { 2, 4, 6, 8, …}    infinite set  

- S = { j : j > 0, and j = 2k for k > 0 }   

- S = { j : j is nonnegative and even }  

Terminology and Notation:  

- To indicate that x is a member of set S, we write x∈ S.  

- To denote the empty set (the set with no members) as {} or ∅.  

- If every element of set A is also an element in set B, we say that A is a 

subset of B, and write A⊆ B or B⊇A.  

- If A is not a part of B, if at least one of the elements of A does not belong to 

B then we say that A is not a subset of B, and write A⊈ B or B⊉A.  

  

Basic Operations on Sets:  

- Complement: Á or A̅  or Ac  
A̅ = { x:x ∉ A, x ∈ U}  

Contain all elements in universal set which are not in A.  

- Union: consist of all elements in either A or B  

A ∪ B = { x:x ∈ A or x ∈ B}  

- Intersection: consist of all elements in both A or B A ⋂ B = { x:x ∈ A and 

x ∈ B}  

  

- Difference (/): consist of all elements in A but not in B A / B = { x:x ∈ A 

but x ∉ B}  
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-  

Properties of Sets:  

Let A, B, and C be subsets of the universal set U.  

- Distributive properties  

A ⋂ (B ∪ C) = (A ⋂ B) ∪ (A ⋂ C)  

A ∪ (B ⋂ C) = (A ∪ B) ⋂ (A ∪ C)  

- Idempotent properties  

A ⋂ A = A.  

A ∪ A = A.  

- Double Complement property  

(A~) ~ = A.  

- De Morgan’s laws  

A ∪ B) ~ = A ~  ⋂ B ~  

(A ⋂ B) ~ = A ~ ∪ B ~  

- Commutative properties  

A ⋂ B = B ⋂ A.  

A ∪  B = B ∪  A.  

- Associative laws  

A ⋂ (B ⋂ C) = (A ⋂ B) ⋂ C  

A ∪ (B ∪ C) = (A ∪ B) ∪ C  

- Identity properties  

A ∪ ∅ = A  

A ⋂ U = A  

- Complement properties  

A ∪  A~ = U  

A ⋂  A~ = ∅  
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Language  
Symbols: Symbols are an entity or individual objects, which can be any letter, 

alphabet, or any picture.  
  

Example:  

1, a, b, #  

Alphabets: Alphabets are a finite set of symbols. It is denoted by ∑.  
  

Examples:  

∑ = {a, b}    

∑ = {A, B, C, D}     

∑ = {0, 1, 2}    

∑ = {#, β, Δ}    

String: It is a finite collection of symbols from the alphabet. The string is denoted 

by w.  

Example:  

If ∑ = {a, b}, various string that can be generated from ∑ are {ab, aa, aaa, bb, bbb, 

ba, aba, ....}.  

 A string with no symbols is known as an empty string. It is represented by 

epsilon (𝜖) or lambda (𝜆) or null (∧).  

 The number of symbols in a string w is called the length of a string. It is 

denoted by |w|.  

Example: w 

= 010    

|w| = 3    

|00100| = 5  

|ab| = 2  

| ∧ | = 0      
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Language: A language is a set of strings of terminal symbols derivable from 

alphabet. A language which is formed over Σ can be Finite or Infinite.  

Example:   

a) L1 = {Set of string of length 2}  

           = {aa, bb, ba, bb}            Finite Language  

  

b) L2 = {Set of all strings starts with 'a'}  

           = {a, aa, aaa, abb, abbb, ababb, …}         Infinite Language  

Types of Languages:  

1- Natural Languages: They are languages that spoken by humans e.g.: English, 

Arabic and France. It has alphabet: ∑={a, b, c, …. z}. from these alphabetic we 

make sentences that belong to the language.  

2- Programming Language: (e.g.: c++, Pascal) it has alphabetic: ∑={a, b, c, z, 

A, B, C, .. , Z , ?, /, -, \}. From these alphabetic we make sentences that belong 

to programming language.  

  

Example:  

Alphabetic: ∑= {0, 1}.  

Sentences: 0000001, 1010101  

  

Example:  

Alphabetic: ∑= {a, b}.  

Sentences: ababaabb, bababbabb  

  

Example:  

Let ∑ = {x} be set of alphabet of one letter x. we can write this in form:  

L1 = {x, xx, xxx, …} or write 

this in an alternate form: L1 = 

{xn for n = 1, 2, 3, ...}  

  

Let a = xxx and b = xxxxx 

Then ab = xxxxxxxx = x8          

ba = xxxxxxxx = x8  

Example:  
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L2 = { x, xxx, xxxxx, ... }  

     = { x odd}  

     = { x2n+1 for n = 0, 1, 2, 3, ... }  

  

 PALINDROME  

Let us define a new language called PALINDROME over the alphabet  

∑= {a, b}  

PALINDROME = { ∧, and all strings x such that reverse(x) = x }  If 

we begin listing the elements in PALINDROME we find:  

PALINDROME = { ∧, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, abba, ... }  

  

Kleene Closuer  

They are two repetition marks, also called Closuer or Kleene Star.  

* : Repeat (0 – n) times.   

+ : Repeat (1 – n) times.  

  

Example:  

If ∑ = {x}, then  

  

∑* = L3 = { ∧, x, xx, xxx, …}  

∑+ = L3 = { x, xx, xxx, …}  

  

Example:  

If ∑ = {0, 1}, then  

  

∑* = L4 = { ∧, 0, 11, 001, 11010, …}  

∑+ = L4 = { 0, 01, 110, 101, …}  

 Example:  

If ∑ = {aa, b}, then  

  

∑* = L5 = { ∧, aab, baa, baab, aabb, …}  

∑+ = L5 = { aaaa, b, baaaa, bb, …}  
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 ( في هذه اللغة الكلمةab( غير مقبولة لأن )aa .هو حرف واحد ولايجوز تجزئته ) 

 Example:  

If ∑ = { }, then  

  

∑* = L4 = {∧}  

∑+ = L4 = ∅ or { }  
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Lecture Two  

Regular Expression (RE)  
  

Regular languages are formal languages that can be expressed using regular 

expressions.  

Regular languages can be generated from one-element languages by applying 

certain standard operations a finite number of times. These simple operations 

include (concatenation, union, and Kleen closure).  

Regular expressions can be thought of as the algebraic description of a regular 

language. Regular expression can be defined by the following rules:  

1. Every letter of the alphabet ∑ is a regular expression.  

2. Null string ∧ and empty set ∅ are regular expressions.  

3. If r1 and r2 are regular expressions, then  

(i) r1, r2  

(ii) r1r2 ( concatenation of r1r2 ) 

(iii) r1 + r2 ( union of r1 and r2 ) 

(iv) r1*, r2* ( kleen closure of r1 and r2 ) are also regular expressions  

4. If a string can be derived from the rules 1, 2 and 3 then it is also a regular 

expression.  

Note that a* means zero or more occurrence of a in the string while a+ means that 

one or more occurrence of a in the string. That means a* denotes language L =  

{∧ , a, aa, aaa, ….} and a+ represents language L = {a, aa, aaa, ….}. And also note 

that there can be more than one regular expression for a given set of strings.  

Example:  Write  the  language  for  each  of  the  following 

 regular expressions, ∑ = {a,b}.  

1- (ab)* = {⋀, ab, abab, ababab, … }  

2- ab*a = {aa, aba, abba, abbba, abbbba, …}  

3- a*b* = {⋀, a, b, aa, ab, bb, aaa, aab, abb, bbb, aaaa, …}  

Notice that ba and aba are not in this language. Also we should be very careful 

to observe that a*b* ≠ (ab)*  
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Example: Write a regular expression for the language containing odd number of 

1s, ∑ = {0,1}.  

The language will contain at least one 1. It may contain any number of 0s 

anywhere in the string. So the language we have to write a regular expression for 

is 1, 01, 01101, 0111, 111, … This language can be represented by the following 

regular expression:  

0*(10*10*)*10*  

Example:  Write  the  language  for  each  of  the  following 

 regular expressions, ∑ = {x}.  

1- L1 = {xodd} = x(xx)* or (xx)*x = {x, xxx, xxxxx, …} 2- L2 = 

{xeven} = (xx)* or (xx)*xx or xx(xx)* = {⋀, xx, xxxx, …}  

Examples:  

1- Consider the language L3 defined over the alphabet ∑ = {a, b, c}, All the words 

in L3 begin with an a or c and then are followed by some number of b's. We 

may write this as:  

 (a + c)b*  

  

2- Consider a finite language L4 that contains all the strings of a's and b's of 

length exactly three.  

L4 = {aaa, aab, aba, abb, baa, bab, bba, bbb}  

So we may write:  

 (a + b)(a + b)(a + b)   or   (a + b)3  

In general, if we want to refer to the set of all possible strings of a's and b's of 

any length, we could write:  

 (a + b)*  

3- Construct RE for all words that begin with the letter a:  

a(a + b)* 

4- All words that begin with an a and end with b can be defined by the 

expression:                           a(a + b)*b  
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5- The language of all words that have at least two a's can be described by the 

expression:  

(a + b)*a(a + b)*a(a + b)*       

6- The language of all words that have at least one a and at least one b:  

(a + b)*a(a + b)* b(a + b)*   or    bb*aa*  

  

7- The words of the form some b's followed by some a's. These exceptions are 

all defined by the regular expression: bb*aa* ≡ b+a+  

  

Example: Write a regular expression for the language  

                 L = {abnw: n >= 3, w ∈ (a + b)+}  

The strings in the language begins with a followed by three bs and followed by 

string w. w will contain at least one a or b. The strings are like abbba, abbbb, 

abbbbababab, abbbaaaa, . . . This language can be represented by the following 

regular expression  

ab3(a + b)+ 

  

 

Homework:  

1- Find a regular expression over the alphabet {a, b}:  

a. L1 = {All strings that contain exactly three a's}  

b. L2 = {All strings that end with ab}  

c. L3 = {All strings in which letter a is even number}  

 

2- Find the output (words) for the following regular expressions:  

a. aa*b  

b. (a + b)*ba  

c.  (11 + 0)*(0+11)*  

 


