(o shall Cu-u.“ Azala

ALSHEIKH ALTOOSI UNIVERSITY

Theory of Computation

dubudal) 4y latl)

Al Ada)

2025-2024
e #LR o

hana.al.shaibani@altoosi.edu.iq

Theory of Computation :lecl Lec. Hanaa Ali

Lecture One

Introduction
Computation: is simply a sequence of steps that performed by computer.

Computation Theory: is the branch that deals with how efficiently problems can
be solved on a model of computation, using an algorithm. This field is divided
into three major branches:

1- Automata theory: Automata Theory deals with definitions and properties of

different types of “computation models”. Examples of such models are:

* Finite Automata: These are used in text processing, compilers, and
hardware design.

» Context-Free Grammars: These are used to define programming languages
and in Artificial Intelligence.

* Turing Machines: These form a simple abstract model of a “real” computer,
such as your PC at home.

2- Computability theory: Computability theory deals primarily with the
guestion of the extent to which a problem is solvable on a computer. In other
words, classify problems as being solvable or unsolvable.

3- Complexity theory: Complexity theory considers not only whether a problem
can be solved at all on a computer, but also how efficiently the problem can
be solved. Two major aspects are considered:

* Time complexity: and how many steps does it take to perform a
computation.

» Space complexity: how much memory is required to perform that
computation.

Some Applications of Computation Theory:
Design and Analysis of Algorithms.
Computational Complexity.

Logic in Computer Science.

Compiler.

Cryptography.

Randomness in Computation.

Quantum Computation

No gk wdE

p—
[EEN
| —

https://en.wikipedia.org/wiki/Model_of_computation
https://en.wikipedia.org/wiki/Model_of_computation
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Automata_theory
https://en.wikipedia.org/wiki/Automata_theory
https://en.wikipedia.org/wiki/Computability_theory
https://en.wikipedia.org/wiki/Computability_theory
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Computational_complexity_theory

Theory of Computation :lecl Lec. Hanaa Ali

A set is a collection of “objects” called the elements or members of the set.
Common forms of describing sets are:

- Listall elements, e.g. {a, b, c, d}.

- Form new sets by combining sets through operators.

Examples in Sets Representation:
- C={ab,c,d e f} finiteset
- S={2,4,6,8, ...} infinite set
- S={j:j>0,andj=2kfork>0}
- S={j:jisnonnegative and even }

Terminology and Notation:

- To indicate that x is a member of set S, we write X€ S.

- To denote the empty set (the set with no members) as {} or @.

- If every element of set A is also an element in set B, we say that A is a
subset of B, and write AC B or B2A.

- If Alis not a part of B, if at least one of the elements of A does not belong to
B then we say that A is not a subset of B, and write AZ B or B2A.

Basic Operations on Sets:

- Complement: Aor A or A°
A={xx¢eA, x €U}
Contain all elements in universal set which are not in A.

- Union: consist of all elements in either A or B
AuB={xxeAorxeB}

- Intersection: consist of all elements inboth AorBA N B={x:x € Aand
X € B}

- Difference (/): consist of all elements in AbutnotinBA /B={xx €A
but x ¢ B}

p—
N
| —

Theory of Computation :lecl Lec. Hanaa Ali

Properties of Sets:
Let A, B, and C be subsets of the universal set U.

- Distributive properties

ANBUC)=(ANB)UANC)

AuBNC)=(AuB)N(AuUC)
- ldempotent properties

A NA=A

AUA=A

- Double Complement property
(A) " =A.

- De Morgan’s laws
A UB)™=A"NB~
(ANB)"=A"uUB~

- Commutative properties
A NB=BNA.
AU B=BU A

- Associative laws
ANBNC=ANBNC
AuBUC)=(AuB)uUC

- ldentity properties
AUD=A
ANU=A

- Complement properties

AuUuA-=U
AN A =0

Theory of Computation :lecl Lec. Hanaa Ali

Language
Symbols: Symbols are an entity or individual objects, which can be any letter,
alphabet, or any picture.

Example:
1,a,b,#

Alphabets: Alphabets are a finite set of symbols. It is denoted by ..

Examples:

2.= {a, b}

> =1{A,B,C, D}
> =1{0,1,2}
2= {# B, A}

String: It is a finite collection of symbols from the alphabet. The string is denoted
by w.

Example:
If Y = {a, b}, various string that can be generated from) are {ab, aa, aaa, bb, bbb,
ba, aba,}.

25 Astring with no symbols is known as an empty string. It is represented by
epsilon (¢€) or lambda (4) or null (A).

25 The number of symbols in a string w is called the length of a string. It is
denoted by |w|.

Example: w
=010

wj =3
|00100| =5
lab| = 2

|A[=0

p—
~
| —

Theory of Computation :lecl Lec. Hanaa Ali

Language: A language is a set of strings of terminal symbols derivable from
alphabet. A language which is formed over X can be Finite or Infinite.
Example:
a) L1 ={Set of string of length 2}
= {aa, bb, ba, bb} Finite Language

b) L2 = {Set of all strings starts with 'a'}
= {a, aa, aaa, abb, abbb, ababb, ...} Infinite Language

Types of Languages:

1- Natural Languages: They are languages that spoken by humans e.g.: English,
Arabic and France. It has alphabet: }={a, b, c, z}. from these alphabetic we
make sentences that belong to the language.

2-Programming Language: (e.g.: c++, Pascal) it has alphabetic: >={a, b, c, z,
A B,C, .. ,Z,?/ - \}. From these alphabetic we make sentences that belong
to programming language.

Example:
Alphabetic: Y= {0, 1}.
Sentences: 0000001, 1010101

Example:
Alphabetic: Y= {a, b}.
Sentences: ababaabb, bababbabb

Example:

Let) = {x} be set of alphabet of one letter x. we can write this in form:
L; = {X, XX, XXX, ...} Or write
this in an alternate form: L; =
{x"forn=1,2,3,..}

Let a = xxx and b = xxxxx
Then ab = xxxxxxxx = x8
ba = XXXXXXXX = X8

Example:

p—
(@]
| —

Theory of Computation :lecl Lec. Hanaa Ali

Lo = { X, XXX, XXXXX, ... }
={Xodd}
={x**1forn=0,1,23,..}

PALINDROME
Let us define a new language called PALINDROME over the alphabet

2={a b}
PALINDROME = { A, and all strings x such that reverse(x) = x } If
we begin listing the elements in PALINDROME we find:
PALINDROME = { A, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, abba, ... }

Kleene Closuer

They are two repetition marks, also called Closuer or Kleene Star.
* : Repeat (0 —n) times.
+ : Repeat (1 — n) times.

Example:
If) = {x}, then

Y =Ls={A X, XX, XXX, ...}

Y =Ls= {x, XX, XXX, ...}

Example:
If Y = {0, 1}, then

Y =L4s={A0,11,001, 11010, ...}
Y+ =1L4=1{0,01,110, 101, ...}
Example:
If), = {aa, b}, then

Y =Ls={ A, aab, baa, baab, aabb, ...}
Y'" = Ls= { aaaa, b, baaaa, bb, ...}

Theory of Computation :lecl Lec. Hanaa Ali

45383 555 aal5 G s (a0) OY Asiie s (ab) RS Al o3 8 &
Example:
If Y ={}, then

Y =Ls={n}
Y =Ls=0or{}

Theory of Computation :lec2 Lec. Hanaa Ali

Lecture Two

Regular Expression (RE)

Regular languages are formal languages that can be expressed using regular
expressions.

Regular languages can be generated from one-element languages by applying
certain standard operations a finite number of times. These simple operations
include (concatenation, union, and Kleen closure).

Regular expressions can be thought of as the algebraic description of a regular
language. Regular expression can be defined by the following rules:

1. Every letter of the alphabet) is a regular expression.
2. Null string A and empty set @ are regular expressions.
3. Ifrl and r2 are regular expressions, then
(i) r1, r2
(if)rdr2 (concatenation of r1r2)
(iii)rl +r2 (union of rland r2)
(iv) r1*, r2* (kleen closure of rl and r2) are also regular expressions
4. If a string can be derived from the rules 1, 2 and 3 then it is also a regular
expression.

Note that a* means zero or more occurrence of a in the string while a* means that
one or more occurrence of a in the string. That means a* denotes language L =

{A,a, aa, aaa,} and a* represents language L = {a, aa, aaa,}. And also note
that there can be more than one regular expression for a given set of strings.

Example: Write the language for each of the following
regular expressions, Y. = {a,b}.

1- (ab)* = {A, ab, abab, ababab, ... }
2- ab*a = {aa, aba, abba, abbba, abbbba, ...}
3- a*b* = {), a, b, aa, ab, bb, aaa, aab, abb, bbb, aaaa, ...}

2 Notice that ba and aba are not in this language. Also we should be very careful
to observe that a*b* # (ab)*

—
oo
| —

Theory of Computation :lec2 Lec. Hanaa Ali

Example: Write a regular expression for the language containing odd number of

Is, > ={0,1}.

The language will contain at least one 1. It may contain any number of Os
anywhere in the string. So the language we have to write a regular expression for
1s1,01,01101,0111, 111, ... This language can be represented by the following
regular expression:

0*(10*10*)*10*

Example: Write the language for each of the following
regular expressions, Y. = {x}.
1- Ly = {x9} = x(XX)* or (xX)*X = {X, XXX, XXXXX, ...} 2- Lo =

{Xeven} - (XX)* or (XX)*XX or XX(XX)* = {/\, XX, XXXX, .. }

Examples:

1- Consider the language L3 defined over the alphabet), = {a, b, c}, All the words
in L3 begin with an a or ¢ and then are followed by some number of b's. We
may write this as:

(a+c)b*

2- Consider a finite language L, that contains all the strings of a's and b's of
length exactly three.

L, = {aaa, aab, aba, abb, baa, bab, bba, bbb}

So we may write:
(@a+b)@a+b)a+b) or (a+h)’

In general, if we want to refer to the set of all possible strings of a's and b's of
any length, we could write:

(a+b)*

3- Construct RE for all words that begin with the letter a:
a(a+b)*

4- All words that begin with an a and end with b can be defined by the
expression: a(a+b)*b

—
©
| —

Theory of Computation :lec2 Lec. Hanaa Ali

5- The language of all words that have at least two a's can be described by the
expression:
(a+b)*a(a+ b)*a(a + b)*

6- The language of all words that have at least one a and at least one b:
(a+Db)*a(a+b)* b(a+b)* or bb*aa*

7- The words of the form some b's followed by some a's. These exceptions are
all defined by the regular expression: bb*aa* = b*a*

Example: Write a regular expression for the language
L={ab"w:n>=3,we (a+b)}

The strings in the language begins with a followed by three bs and followed by
string w. w will contain at least one a or b. The strings are like abbba, abbbb,
abbbbababab, abbbaaaa, . . . This language can be represented by the following
regular expression

ab’(a + b)*

Homework:

1- Find a regular expression over the alphabet {a, b}:
a. L = {All strings that contain exactly three a's}
b. L, ={All strings that end with ab}
c. Ls={All strings in which letter a is even number}

2- Find the output (words) for the following regular expressions:
a. aa*b
b. (a+b)*ba
c. (11+0)*(0+11)*

—
| —

10

